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In this paper, sampled-data based average-consensus control is considered for networks consisting of
continuous-time first-order integrator agents in a noisy distributed communication environment. The
impact of the sampling size and the number of network nodes on the system performances is analyzed.
The control input of each agent can only use information measured at the sampling instants from its
neighborhood rather than the complete continuous process, and the measurements of its neighbors’
states are corrupted by random noises. By probability limit theory and the property of graph Laplacian
matrix, it is shown that for a connected network, the static mean square error between the individual
state and the average of the initial states of all agents can be made arbitrarily small, provided the sam-
pling size is sufficiently small. Furthermore, by properly choosing the consensus gains, almost sure
consensus can be achieved. It is worth pointing out that an uncertainty principle of Gaussian networks
is obtained, which implies that in the case of white Gaussian noises, no matter what the sampling size
is, the product of the steady-state and transient performance indices is always equal to or larger than a
constant depending on the noise intensity, network topology and the number of network nodes.

multi-agent systems, average consensus, stochastic systems, sampled-data based control, distributed stochastic approximation,

uncertainty principle

1 Introduction

In recent years, distributed coordination and self-
organization of multi-agent systems have attracted
a lot of attention from the researchers in the con-
trol community. On the one hand, due to the
quick development of technologies of communica-
tion, robots and micro sensors, many problems
have emerged in the control and filtering of dis-
tributed systems, such as swarming[1], flocking[2],

formation control[3], distributed computation[4]

and distributed filtering and information fusion of
sensor networks[5,6]. Other than centralized sys-
tems, control of distributed systems comes down
to the design of network topologies and commu-
nication protocols, which needs a compact com-
bination of the control and communication the-
ory. On the other hand, many self-organizing phe-
nomena revealed in biological and social economic
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systems[7−10] need a rigorous theoretical analysis.
In self-organization, a stable collective behavior
often emerges from local interaction of individu-
als. At present, distributed coordination and self-
organization have become two closely related pop-
ular topics in the research of complex systems. In
fact, they are two sides of the same coin, which are
from the perspectives of control and modeling, re-
spectively.

For distributed coordination, it is a fundamen-
tal requirement that without central control sta-
tions, the whole group can also achieve consensus
on the shared data only through local communi-
cation. And for self-organization, network syn-
chronization is the most elementary phenomenon.
Therefore, consensus or agreement has become a
common problem for distributed coordination and
self-organization of multi-agent systems. Consen-
sus control generally means to design a network
protocol for the communication of the group, such
that as time goes on, all agents asymptotically
reach an agreement on their information states.

Jadbabaie et al.[11] considered the angle syn-
chronization of networks of integrator agents with
switching undirected network topology and gave
a theoretical explanation for the synchronization
phenomenon observed by Vicsek et al.[7] They
proved that if the network topology is jointly-
connected, then synchronization will be achieved
asymptotically. Then Liu and Guo[12] gave a suf-
ficient condition on the system parameters to en-
sure the connectivity of the network topology for
the first time. Ren and Beard[13] extended the con-
vergence analysis to the case with directed topol-
ogy. They proved that if the network topology
is jointly-containing-spanning tree, then consensus
will be achieved asymptotically. Wang and Guo[14]

showed that the system considered in ref. [13] is
input to state stable (ISS) from the input noises
to consensus error if and only if the network topol-
ogy is jointly-containing-spanning-tree. For some
consensus problems, the common value to which
all the states converge is also required to be a
function of the initial states of the group. It is
often called χ-consensus. One of its most com-
mon form is the average-consensus. How to design

χ-consensus protocols is a challenging problem.
Olfati-Saber and Murray[15] considered average-
consensus problems of networks of first-order in-
tegrator agents with fixed and switching topolo-
gies. They proved that if the network is an instan-
taneous balanced and strongly connected digraph,
then average-consensus can be achieved. Kingston
and Beard[16] extended the results of ref. [15] to
the discrete-time models and weakened the condi-
tion of instantaneous strong connectivity to being
jointly-containing-spanning-tree.

Many researchers have considered various
consensus problems with different agent dy-
namics and applications, such as high-order
models[17−19], leader-follower systems[20], nonlinear
protocols[21,22], asynchronous protocols[23] and ran-
dom topology graphs[24,25]. For the state of art of
consensus research, we refer the readers to refs. [26,
27].

Most research on consensus in the above lit-
erature assumes an exact data exchange between
agents, i.e., each agent measures its neighbors’
states accurately. Obviously, this assumption is
only an ideal approximation for real communica-
tion channels, since real networks are often in un-
certain communication environment with various
channel noises, source noises and sink noises. Re-
cently, consensus problems with random measure-
ment noises have attracted the attention of some
researchers[28−31]. Kingston et al.[28] and Ren et
al.[29] introduced time-varying consensus gains and
designed consensus protocols based on a Kalman
filter structure. They proved that the closed-loop
system is input-to-state stable (ISS) from measure-
ment noises to consensus errors, and when there
is no noise, the protocols designed ensure consen-
sus to be achieved asymptotically. Huang and
Manton[30] introduced decreasing consensus gains
to attenuate the measurement noises. They proved
that for a connected undirected network topology,
the states of all agents converge to a common ran-
dom variable in mean square; while, for a strongly
connected circulant network topology, the static
mean square error between the individual state and
the average of the initial states of all agents is in
the same order as that of the variance of the mea-
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surement noises. Li and Zhang[31] considered the
first-order continuous-time average-consensus con-
trol with fixed topologies and Gaussian communi-
cation noises. They gave a necessary and sufficient
condition for asymptotically unbiased mean square
average-consensus.

According to the dynamics of agents, the con-
sensus problems can be divided into two cate-
gories: discrete-time systems and continuous-time
systems. Up to now, the analysis for these two
kinds of systems are almost mutually indepen-
dent: for discrete-time agents described by dif-
ference equations, the control inputs are also dis-
crete sequences; and for continuous-time agents de-
scribed by differential equations, the control in-
puts are also continuous processes. However, in
many cases, though the system itself is a contin-
uous process, only sampled-data (SD) at discrete
sampling instants is available for control synthesis,
due to the application of digital sensors and con-
trollers. This naturally leads to the following ques-
tions: for a given control objective, whether or not
an SD-based control can match a full-state based
continuous control; if not, how to characterize the
difference quantitatively by the sampling size and
system parameters[32]. Different from discrete-time
systems, SD-based control systems are hybrid and
with both continuous-time and discrete-time sig-
nals. For an SD-based control system, not only
the states at sampling instants, but also the final
effect of the control law on the original continuous
system should be considered, which is what the
designers are really concerned about. In addition,
for discrete-time systems, the sampling size is often
assumed to be 1 and its impact on system perfor-
mances is neglected. While, for SD-based control
systems, the impact of the sampling size is par-
ticularly paid attention to. Up to now, central-
ized SD-based control systems have been widely
addressed[33]. In distributed networks, transmit-
ting full-state information may result in high com-
munication traffic. Considering the wide applica-
tion of digital communication and control in dis-
tributed systems, communication between adja-
cent nodes at only sampling instants will save the
communication cost effectively. So it is of great sig-

nificance to pursue the research on SD-based con-
trols of distributed systems[27].

In this paper, SD-based average-consensus con-
trol is considered for networks of continuous-time
first-order integrator agents with undirected topol-
ogy. The control input of each agent is based only
on the information measured at the sampling in-
stants from itself and its neighborhood rather than
the complete continuous process. In addition, the
measurements of its neighbors’ states are corrupted
by random measurement noises. At each sampling
instant, a decreasing consensus gain is used. Differ-
ent from the consensus problem with full-state in-
formation, here, the closed-loop system is a hybrid
system with the coupling of the continuous-time
and discrete-time states. The deviation between
the states at continuous time instants and those
at the sampling instants need to be estimated. It
is shown that for a connected network, when the
sampling size h is sufficiently small, the static mean
square error between the individual state and the
average of the initial states of all agents can be
made arbitrarily small. Furthermore, by properly
choosing the consensus gains, almost sure consen-
sus can be achieved, and as time goes on, all agents’
states will converge to a common random variable
with probability 1. The mathematical expectation
of the random variable is just the average of the
initial states of the group, and the variation of the
random variable vanishes as the sampling size h

decreases to zero. By analyzing the impact of the
number of network nodes N and the sampling size
h on the system performances, it is shown that
the choice of N is a trade-off between the steady-
state performance and the cost of the network. In
particular, for regular networks, the steady-state
performance can be improved at the cost of an
increase of N . It is also shown that the choice
of h is a trade-off between the steady-state and
transient performances. In the case of white Gaus-
sian noises, reducing h can not optimize the static
and transient performances simultaneously, since
no matter what the sampling size is, the product
of the steady-state and transient performance in-
dices is always equal to or larger than a positive
constant depending on the noise intensity, network
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topology and the number of network nodes. This
constant can be viewed as an integrated index re-
flecting the static and transient performances. We
call this phenomenon the uncertainty principle of
Gaussian networks.

The remainder of this paper is organized as fol-
lows. In section 2, some concepts in graph theory
are described, and the problem to be investigated
is formulated. In section 3, the protocol designed is
proved to be an asymptotic mean square average-
consensus protocol. In section 4, the consensus
gains are properly chosen such that almost sure
consensus can be achieved, and the impact of the
number of network nodes and the sampling size on
the system performances is analyzed. In section 5,
two numerical examples are given to illustrate our
results. In section 6, some concluding remarks and
further research topics are discussed.

The following notations will be used throughout
this paper: 1 denotes the N -dimensional column
vector with all ones. IN denotes the N -dimensional
identity matrix. For a given vector or matrix A, AT

denotes its transpose; ‖A‖∞ denotes its infinity-
norm; ‖A‖2 denotes its 2-norm; ρ(A) denotes its
spectral radius. For a given real number x, �x� de-
notes the largest integer smaller than or equal to
it. For a given random variable X, E(X) denotes
its mathematical expectation; Var(X) denotes its
variance.

2 Preliminaries and problem formulation

Let G = {V, E ,W} be a weighted graph, where
V = {1, 2, . . . , N} is the set of nodes, node i rep-
resents the ith agents; E is the set of edges, an
edge in G is denoted by an unordered pair (j, i).
(j, i) ∈ E if and only if information can be ex-
changed between the ith and the jth agent, and
(i, j) ∈ E ⇔ (j, i) ∈ E . The neighborhood of the
ith agent is denoted by Ni = {j ∈ V | (j, i) ∈ E},
the cardinal number of Ni is called the degree of
node i, denoted by di. dG

�= max1�i�N di is called
the degree of G. G is called a d-regular graph, if
di ≡ d > 0, i = 1, 2, . . . , N .

We suppose that there is no isolated node in G,
that is, di > 0, i = 1, 2, . . . , N .
W = [wij ] ∈ R

N×N is called the weighted ad-

jacency matrix of G, for any i, j ∈ V, wij � 0,
wij = wji. wij > 0 ⇔ j ∈ Ni. LG = D − W
is called the Laplacian matrix of G, where D =
diag(w1, . . . , wN), wi =

∑N

j=1 wij .
A sequence of (i1, i2), (i2, i3), . . . , (ik−1, ik) is

called a path from node i1 to node ik. If for any
i, j ∈ V, there is a path from i to j, then G is called
a connected graph.

Below is a well-known theorem for connected
graphs.

Theorem 2.1[34]. If G = {V, E ,W} is a con-
nected graph, then LG is a symmetric matrix,
1TLG = LG1 = 0, and LG has N real eigenvalues,
in an ascending order:

0 = λ1 < λ2 � · · · � λN � 2Δ,

where Δ = max1�i�N wi. λ2 is called the algebraic
connectivity.

In this paper, we consider the average-consensus
control for a network of continuous-time first-order
integrator agents with the dynamics

dxi(t)
dt

= ui(t), i = 1, 2, . . . , N, (1)

where xi is the state of the ith agent, ui is the con-
trol input. Here, for simplicity, we suppose that
both xi(t) and ui(t) are scalars, generalization of
the results to the vector case is straightforward.

Denote X(t) = [x1(t), . . . , xN(t)]T.
The ith agent can receive information from its

neighbors:

yji(t) = xj(t) + nji(t), j ∈ Ni, (2)

where yji(t) denotes the measurement of the jth
agent’s state xj(t) by the ith agent. {nji(t), Fji(t),
t � 0} is a stochastic process on the probabil-
ity space {Ω,F , P}, representing the measurement
noises, {Fji(t) = σ(nji(s), 0 � s � t), t � 0} is a se-
quence of nondecreasing σ-algebras. Therefore, the
graph G shows the structure of information flow in
the system (1), called the information flow graph or
network topology graph of the system (1). (G,X)
is usually called a dynamic network[15].

We call the group of controls

U = {ui, i = 1, 2, . . . , N}
a measurement-based distributed protocol, if

ui(t) ∈ σ(xi(s), yji(s), j ∈ Ni, 0 � s � t),

∀ t � 0, i = 1, 2, . . . , N. (3)
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The so-called consensus control means designing
a measurement-based distributed protocol for the
dynamic network (G,X), such that all agents
achieve an agreement on their information states
in some sense, when t → ∞.

Below we introduce two definitions about con-
sensus protocols. Considering the impact of ran-
dom measurement noises, these definitions are both
in the probabilistic sense.

Definition 2.1[30]. A distributed protocol U
is called a mean square weak consensus protocol if
under U , system (1) has the following properties:
limt→∞ E(xi(t) − xj(t))2 = 0, i, j = 1, 2, . . . , N ,
i �= j.

Definition 2.2[30]. A distributed protocol U
is called an almost sure strong consensus protocol
if under U , system (1) has the following properties:
limt→∞ xi(t) = x∗ a.s., i = 1, 2, . . . , N , where x∗ is
a finite random variable.

Let χ : R
N → R be a function of N vari-

ables, the so-called χ-consensus control means de-
signing a distributed protocol for the dynamic net-
work (G,X) such that the states of all the agents
achieve χ(X(0)) when t → ∞, that is, computing
χ(X(0)) in a distributed way. χ(X(0)) is called
the group decision value[15]. The special case of
χ(x) = Ave(x) �= 1

N

∑N

j=1 xj is called average-
consensus control. In this case, the group deci-
sion value is the average of the initial states of the
group, namely, χ(X(0)) = 1

N

∑N

j=1 xj(0).

Remark 1. When there is no measurement
noise, the states of all agents are deterministic pro-
cesses, Definitions 2.1 and 2.2 both have the same
meaning as the consensus definition of determinis-
tic process in refs. [13, 15]. However, when there
are random measurement noises, these two con-
cepts are, generally speaking, not equivalent any
more.

It can be seen that, if the mean square weak con-
sensus is achieved, then for any given ε, δ > 0, there
is always T > 0 such that P{max1�i<j�N |xj(t)
−xi(t)| > ε} < δ, ∀t � T . This tells us that the
probability of the static difference between agents’
states to be larger than any pre-given positive con-
stant can be made arbitrarily small.

Almost sure strong consensus implies that the

closed-loop system achieves consensus with proba-
bility 1, and the states of the group are bounded
with probability 1: sup1�i�N supt�0 |xi(t)| < ∞
a.s.

In this paper, we assume that for each agent,
only the information at the sampling instants from
its neighbors is available. For the dynamic network
(G,X), we propose the distributed protocol as

ui(t) = a(k)
∑

j∈Ni

wij(yji(kh) − xi(kh)),

∀ t ∈ [kh, (k + 1)h), k = 0, 1, . . . , i = 1, . . . , N, (4)
where h is the sampling size; {a(k), k = 0, 1, . . .} is
usually called the sequence of consensus gains[29].

By (2) and the definition of LG , protocol (4) can
be written in the vector form

U(t) = −a

(
t′

h

)

LGX(t′)+a

(
t′

h

)

N(t′), t � 0, (5)

where ni(t) =
∑

j∈Ni
wijnji(t), t′ = � t

h
�h and

U(t) = [u1(t), . . . , uN(t)]T,

N(t) = [n1(t), . . . , nN(t)]T.

In this paper, we will find proper sequences
of consensus gains, such that under protocol (4),
the static mean square error between the indi-
vidual state xi(t) and the group decision value
1
N

∑N

j=1 xj(0) can be made arbitrarily small, pro-
vided the sampling period h is sufficiently small.

3 Asymptotic mean square average con-
sensus

The discrete-time model with zero-order holder of
(1) is

xi((k+1)h) = xi(kh)+hui(kh), k = 0, 1, . . . , (6)
which can be re-written in the vector form

X((k + 1)h) = X(kh) + hU(kh). (7)
Substituting the protocol (5) into (7) leads to

X((k + 1)h) = Ph(k)X(kh) + ha(k)N(kh), (8)
where Ph(k) = IN − a(k)hLG .

Denote
⎧
⎪⎨

⎪⎩

Φh(n, k − 1) = Ph(n)Ph(n − 1) · · ·Ph(k),

∀ n = 0, 1, . . . ; k = 0, 1, . . . , n,

Φh(k, k) = IN , ∀ k = 0, 1, . . .

(9)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψh(n, k − 1) =
(

Ph(n) − 1
N

11T

)

× · · ·

×
(

Ph(k) − 1
N

11T

)

,

∀ n = 0, 1, . . . ; k = 0, 1, . . . , n,

Ψh(k, k) = IN , ∀ k = 0, 1, . . .

(10)

Then, we have the following lemma.

Lemma 3.1. If G is connected, and the sam-
pling size h < 1

2Δ supk�0 a(k)
, then

‖Ψh(n, k − 1)‖2

=
∥
∥
∥
∥Φh(n, k − 1) − 1

N
11T

∥
∥
∥
∥

2

=
n∏

i=k

(1 − ha(i)λ2),

∀ n = 0, 1, . . . ; k = 0, 1, . . . , n, (11)

where λ2 is given in Theorem 2.1.

Proof. By Theorem 2.1, one can get
1
N
11TPh(k) = Ph(k) 1

N
11T = 1

N
11T, ∀ k = 0, 1, . . .,

and Ψh(n, k − 1) = Φh(n, k − 1) − 1
N
11T, ∀ n =

0, 1, . . .; k = 0, 1, . . . , n.
Notice that LG is symmetric, and has a sin-

gle eigenvalue 0 with right eigenvector 1, and left
eigenvector 1T. Then, there exists a standard
orthogonal matrix T = (t1, . . . , tN) with t1 =

1√
N
1, such that LG = Tdiag(0, λ2, . . . , λN )T−1, and

hence

Ph(k) = Tdiag(1, 1 − ha(k)λ2, . . . ,

1 − ha(k)λN )T−1,∀ k = 0, 1, . . .

This together with Tdiag(1, 0, . . . , 0)T−1 = t1t
T
1 =

1
N
11T leads to

Ph(k) − 1
N

11T

= Tdiag(0, 1 − ha(k)λ2, . . . ,

1 − ha(k)λN )T−1,∀ k = 0, 1, . . .

Furthermore, by 2Δh supk�0 a(k) < 1, 0 < λi �
2Δ, i = 2, . . . , N , we have

‖Ψh(n, k − 1)‖2

= ρ

(

Tdiag
(

0,
n∏

i=k

(1 − ha(i)λ2),

. . . ,
n∏

i=k

(1 − ha(i)λN )
)

T−1

)

=
n∏

i=k

(1 − ha(i)λ2),

∀ n = 0, 1, . . . ; k = 0, 1, . . . , n.

Thus, (11) holds.
To get the main result, we need the following as-

sumptions on the network topology, the measure-
ment noises and the sequence of consensus gains
{a(k), k = 0, 1, . . .}.

(H1) G is a connected graph.
(H2) {nji(kh), k = 0, 1, . . ., i, j = 1, 2, . . . , N ,

(j, i) ∈ E} are independent sequences of martingale
differences, satisfying max(j,i)∈E supk�0 En2

ji(kh) �
σh, where σh = o(h−2), h → 0.

(H3) a(k) > 0, k = 0, 1, . . .;
∞∑

k=0

a(k) = ∞;
∞∑

k=0

a2(k) < ∞.

Remark 2. Here we consider only the net-
works with time-invariant topology. This is be-
cause on the one hand, research on time-invariant
topology is the foundation of that on various kinds
of time-varying topologies; on the other hand,
time-invariant topology is suitable for many appli-
cations in distributed computation, formation con-
trol and data fusion of sensor networks[5, 6, 35, 36].

Remark 3. Assumption (H2) includes
bounded noises and white Gaussian noises as its
special cases:

(H2.A) {nji(kh), k = 0, 1, . . ., i, j = 1, 2, . . . , N ,
(j, i) ∈ E} are independent i.i.d sequences, each
with a uniform distribution on [−δij , δij ], δij ∈
(0,∞).

In this case, σh = max(j,i)∈E δ2
ij

3
= O(1), h → 0.

(H2.B) nji(kh) = σij
Bji((k+1)h)−Bji(kh)

h
, {Bji, i =

1, 2, . . . , N, j ∈ Ni} are independent standard
Brownian motions, σij ∈ (0,∞).

In this case, σh = max(j,i)∈E σ2
ij

h
= O(h−1), h → 0.

Theorem 3.1. For system (1) with protocol
(4), if the sampling size h satisfies h < 1

2Δ supk�0 a(k)
,

then under Assumptions (H1)–(H3), the closed-
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loop system has the following properties:

lim sup
t→∞

E

(

xi(t) − 1
N

N∑

j=1

xj(0)
)2

= o(1),

h → 0, i = 1, 2, . . . , N. (12)

Proof. From (8), we have

X((n + 1)h) = Φh(n,−1)X(0)

+ h

n∑

k=0

Φh(n, k)a(k)N(kh), (13)

where Φh(n, k) is given by (9). From 2Δh

supk�0 a(k) < 1, it follows that 1 − ha(k)wi � 0,
∀ k = 0, 1, . . . , i = 1, . . . , N . Therefore, for any
k = 0, 1, . . ., Ph(k) is a row stochastic matrix1).
Then, by the property of the row stochastic matri-
ces, we have ‖Φh(n, k − 1)‖∞ = 1, ∀ n = 0, 1, . . .;
k = 0, 1, . . . , n.

From (13) and Assumption (H2), we have

E

∥
∥
∥
∥X((n + 1)h) − 1

N
11TX(0)

∥
∥
∥
∥

2

2

� 2
∥
∥
∥
∥Φh(n,−1) − 1

N
11T

∥
∥
∥
∥

2

2

‖X(0)‖2
2

+ 2h2E

∥
∥
∥
∥

n∑

k=0

Φh(n, k)a(k)N(kh)
∥
∥
∥
∥

2

2

= 2
∥
∥
∥
∥Φh(n,−1) − 1

N
11T

∥
∥
∥
∥

2

2

‖X(0)‖2
2

+ 2h2

n∑

k=0

E‖Φh(n, k)a(k)N(kh)‖2
2. (14)

By the equivalence of matrix norms, there exist
C1 > 0, C2 > 0 (which may depend on N) such
that 1

C2
‖ · ‖∞ � ‖ · ‖2 � C1‖ · ‖∞. Thus, by (14)

and noticing that ‖Φh(n, k − 1)‖∞ = 1, we get

E

∥
∥
∥
∥X((n + 1)h) − 1

N
11TX(0)

∥
∥
∥
∥

2

2

� 2
∥
∥
∥
∥Φh(n,−1) − 1

N
11T

∥
∥
∥
∥

2

2

‖X(0)‖2
2

+ 2h2C2
1

n∑

k=0

‖Φh(n, k)‖2
∞a2(k)E‖N(kh)‖2

∞

� 2
∥
∥
∥
∥Φh(n,−1) − 1

N
11T

∥
∥
∥
∥

2

2

‖X(0)‖2
2

+ 2h2C2
1C2

2

n∑

k=0

a2(k)E‖N(kh)‖2
2

� 2
∥
∥
∥
∥Φh(n,−1) − 1

N
11T

∥
∥
∥
∥

2

2

‖X(0)‖2
2

+ 2σhh2

( N∑

i=1

∑

j∈Ni

w2
ij

)

C2
1C2

2

n∑

k=0

a2(k). (15)

From Lemma 3.1 and 1 − x � e−x, x � 0 it follows
that

∥
∥
∥
∥Φh(n,−1) − 1

N
11T

∥
∥
∥
∥

2

� exp
{

− hλ2

n∑

k=0

a(k)
}

, n = 0, 1, . . . ,

which together with Assumption (H3) gives

lim
n→∞

∥
∥
∥
∥Φh(n,−1) − 1

N
11T

∥
∥
∥
∥

2

= 0. (16)

Thus, by (15) and Assumptions (H2)–(H3), we
have

lim sup
n→∞

E

∥
∥
∥
∥X(nh) − 1

N
11TX(0)

∥
∥
∥
∥

2

2

� 2σhh2

( N∑

i=1

∑

j∈Ni

w2
ij

)

C2
1C2

2

∞∑

k=0

a2(k)

= o(1), h → 0. (17)

Notice that from (1) and (5), we have

dX(t)
dt

= −a

(
t′

h

)

LGX(t′) + a

(
t′

h

)

N(t′).

Then, integrating both sides of the above equation
from t′ to t leads to

X(t) − X(t′)

= −a

(
t′

h

)

LGX(t′)(t − t′)

+ a

(
t′

h

)

N(t′)(t − t′), ∀ t � 0. (18)

1) A row stochastic matrix is a square matrix with all elements nonnegative and all rows summed to 1. A products of two row stochastic

matrices is also a row stochastic matrix[37].
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This together with Assumption (H2) implies that

sup
t′�s�t

E‖X(s) − X(t′)‖2
2

� 2a
(

t′

h

)2

h2‖LG‖2
2E‖X(t′)‖2

2

+ 2a
(

t′

h

)2

h2E‖N(t′)‖2
2

� 2a
(

t′

h

)2

h2‖LG‖2
2E‖X(t′)‖2

2

+ 2a
(

t′

h

)2( N∑

i=1

∑

j∈Ni

w2
ij

)

σhh2. (19)

From Assumption (H3) it is obvious that
limt→∞ a( t′

h
) = 0. Then, by (17) we get

sup
t�0

E‖X(t′)‖2
2 < ∞,

and by (19),

lim
t→∞

E‖X(t) − X(t′)‖2
2 = 0, (20)

which together with (17) gives

lim sup
t→∞

E

∥
∥
∥
∥X(t) − 1

N
11TX(0)

∥
∥
∥
∥

2

2

= o(1), h → 0.

Thus, (12) holds.
If Assumption (H2) in Theorem 3.1 is weakened

to the following assumption (H2′), then the mean
square weak consensus can be obtained.

(H2′) {nji(kh), k = 0, 1, . . ., i, j = 1, 2, . . ., N ,
(j, i) ∈ E} are independent sequences of martingale
differences satisfying max(j,i)∈E supk�0 En2

ji(kh) <

∞.

Theorem 3.2. For system (1), if protocol (4)
is applied, then under Assumptions (H1), (H2′)
and (H3), the closed-loop system has the follow-
ing properties:

lim
t→∞

E(xi(t)−xj(t))2 = 0, i, j = 1, 2, . . . , N. (21)

Proof. Since
∑∞

k=0 a2(k) < ∞, for any given
ε > 0, there is r > 0 such that

4h2

( N∑

i=1

∑

j∈Ni

w2
ij

)

C2
1C2

2

× max
(j,i)∈E

sup
k�r

En2
ji(kh)

∞∑

k=r

a2(k) <
ε

2
, (22)

1 − ha(k)wi � 0, k = r, r + 1, . . . , i = 1, 2, . . . , N.

Let eij denote the N -dimensional column vector
with the ith and jth components equal to 1, and
others zero. Then, similarly to (15), by (13) and
(22) we have

E(xi((n + 1)h) − xj((n + 1)h))2

= E

∥
∥
∥
∥eT

ijΦh(n, r − 1)X(r)

+ heT
ij

n∑

k=r

Φh(n, k)a(k)N(kh)
∥
∥
∥
∥

2

2

� 2‖eT
ijΦh(n, r − 1)‖2

2E(‖X(r)‖2
2)

+ 2h2‖eT
ij‖2

2E

∥
∥
∥
∥

n∑

k=r

Φh(n, k)a(k)N(kh)
∥
∥
∥
∥

2

2

� 2‖eT
ijΦh(n, r − 1)‖2

2E(‖X(r)‖2
2)

+ 4h2

( N∑

i=1

∑

j∈Ni

w2
ij

)

C2
1C

2
2

× max
(j,i)∈E

sup
k�r

En2
ji(kh)

n∑

k=r

a2(k)

� 2‖eT
ijΦh(n, r − 1)‖2

2E(‖X(r)‖2
2) +

ε

2
,

n = r, r + 1, . . . (23)

Similarly to (16), by Lemma 3.1 and Assumption
(H3), we have

lim
n→∞

‖eT
ijΦh(n, r − 1)‖2 =

∥
∥
∥
∥eij

1
N

11T

∥
∥
∥
∥

2

= 0,

which together with (23) and the arbitrariness of ε

results in

lim
n→∞

E(xi(nh) − xj(nh))2 = 0,

i, j = 1, 2, . . . , N. (24)

Noticing that for any i, j = 1, 2, . . . , N ,

E(xi(t) − xj(t))2

= E(xi(t) − xi(t′) + xi(t′)

− xj(t′) + xj(t′) − xj(t))2

� 3E(xi(t) − xi(t′))2 + 3E(xi(t′) − xj(t′))2

+ 3E(xj(t′) − xj(t))2,

by (20) and (24) we obtain (21).
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4 Almost sure average consensus

For a stochastic system, what can be really ob-
served (in an experiment) is always a sample path.
Hence, for consensus problems of stochastic sys-
tems, we are naturally concerned with whether or
not almost sure consensus can be achieved. In this
section, we will properly choose the sequence of
consensus gains such that protocol (4) can ensure
almost sure strong consensus.

To this end, we need the following assumptions
on the measurement noises.

(H2′′) {nji(kh), k = 0, 1, . . ., i, j = 1, 2, . . . , N ,
(j, i) ∈ E} are i.i.d. sequences with zero mean
and satisfy max(j,i)∈E supk�0 En2

ji(kh) � σh, where
σh = o(h−2), h → 0.

Below is the main result of this section.

Theorem 4.1. For system (1), if protocol (4)
is applied, and a(k) = log(k+2)

k+2
, k = 0, 1, . . ., then

under Assumptions (H1), (H2′′), the closed-loop
system has the following properties:

(i) there exists a random variable x∗
h such that

lim
t→∞

xi(t) = x∗
h a.s., i = 1, 2, . . . , N ;

(ii) x∗
h has finite expectation and finite variation:

E(x∗
h) =

1
N

N∑

j=1

xj(0);

Var(x∗
h) = h2σh

∑N

i=1

∑
j∈Ni

w2
ij

N 2

∞∑

k=0

a2(k)

= o(1), h → 0. (25)

The proof of this theorem is put into the ap-
pendix.

Remark 4. When there is no measurement
noises, i.e., nji(t) ≡ 0, we can take a(k) ≡ 1. In
this case, {ui(kh), k = 0, 1, . . .}, i = 1, 2, . . . , N ,
is just Algorithm (A1) for discrete-time models in
ref. [15]. However, when the noises are not ze-
ros, if we still take a(k) ≡ 1 (or any other posi-
tive constant), then from (A1) and the law of it-
erated logarithm, it can be seen that even if the
noises {nji(kh), k = 0, 1, . . ., i, j = 1, 2, . . . , N ,
(j, i) ∈ E} are uniformly bounded, the centroid
of the system states will diverge to infinity with
probability 1, and P{limk→∞(xi(kh)−xj(kh)) = 0,
supk |xi(kh)| < ∞, i, j = 1, 2, . . . , N} = 0. This

means that the consensus of the closed-loop system
cannot be achieved. That is why decreasing con-
sensus gains are used when there are measurement
noises. Actually, it can be seen that for consen-
sus problems of dynamic networks, the impact of
measurement noises on the design of protocols is
essential, even if the topology is time-invariant.

In some engineering application of the informa-
tion fusion of wireless sensor networks, the number
of network nodes N is usually very large. This
gives rise to investigating the impact of N on the
information fusion and the asymptotic property of
the system when N increases to infinity. By (25)
one can get the following corollaries.

Corollary 1. For system (1) with protocol
(4), if supN�1 sup1�i<j�N wij < ∞ and the in-
creasing rate of the network degree satisfies dG =
o(N), then under the condition of Theorem 4.1,
Var(x∗

h) = o(1) as N → ∞.

Corollary 2. For system (1) with protocol
(4), if wij ≡ w > 0, i = 1, 2, . . . , N , j ∈ Ni, di ≡
d > 0, i = 1, 2, . . . , N , then under the condition of
Theorem 4.1, Var(x∗

h) = O(N−1) as N → ∞.
The x∗

h in Corollaries 1 and 2 has the same mean-
ing as in Theorem 4.1.

Remark 5. From Corollaries 1 and 2, it can
be seen that, under the conditions of Theorem 4.1,
if the weighted adjacency matrix and the network
degree do not diverge too fast with respect to N ,
then the more the network nodes are, the bet-
ter the effect of the information fusion is. Es-
pecially, for an equally weighted regular network,
the steady-state error of the information fusion is
inversely proportional to the number of network
nodes. Though more nodes can be added, a large
number of nodes will result in a large cost of run-
ning and maintaining the whole network, so the
choice of N is a trade-off between the fusion accu-
racy and the cost.

By (25) we know that under the condition of
Theorem 4.1, a small sampling size gives a small
steady-state error. However, it is not the case that
the smaller the h is, the better the performance of
the system is. This can actually be seen from the
following theorem and Example 2 given below.

Theorem 4.2. For system (1) with proto-
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col (4), if nji(kh) = σ Bji((k+1)h)−Bji(kh)

h
, k =

0, 1, . . ., i = 1, 2, . . . , N , j ∈ Ni, where {Bji, i =
1, 2, . . . , N, j ∈ Ni} are independent standard
Brownian motions, σ ∈ (0,∞), a(k) = log(k+2)

k+2
,

k = 0, 1, . . ., and h < ln 2
4Δ supk�0 a(k)

, then under As-
sumptions (H1), the closed-loop system has the fol-
lowing properties:

shth �
σ

∑N

i=1

∑
j∈Ni

w2
ij

2λ2N 2
, (26)

where

sh =
Var(x∗

h)
∑∞

k=0 a2(k)
,

th =
1

| lim supn→∞
1∑

n
k=0 a(k)

log ‖Ψh(n,−1)‖2| .

Proof. By the condition of the theorem, we
know that Assumption (H2′′) holds. Thus, by The-
orem 4.1,

sh =
hσ

∑N

i=1

∑
j∈Ni

w2
ij

N 2
. (27)

Noticing that h < ln 2
4Δ supk�0 a(k)

and 1 − x � e−2x,

∀x ∈ [0, ln 2
2

), by Lemma 3.1, we have

lim sup
n→∞

log ‖Ψh(n,−1)‖2∑n

k=0 a(k)

� lim sup
n→∞

log(exp{−2hλ2

∑n

k=0 a(k)})
∑n

k=0 a(k)

= −2hλ2,

which together with lim supn→∞
log ‖Ψh(n,−1)‖2∑

n
k=0 a(k)

�
−hλ2 gives th � 1

2hλ2
. Hence, by (27) we have

(26).

Remark 6. The sh in Theorem 4.2 repre-
sents the normalized steady-state error with re-
spect to the sequence of consensus gains, which can
be viewed as a measure of the steady-state perfor-
mance of the closed-loop systems. The smaller the
sh is, the smaller the steady-state error between
each agent’s state and the average of the initial
states of the group is, in other words, the better
the steady-state performance is.

∥
∥
∥
∥X(kh) − 1

N
11TX(kh)

∥
∥
∥
∥

2

2

=
1
N

∑

1�i<j�N

(xi(kh) − xj(kh))2

represents the derivation between different
agents, and so, called consensus error. While,
lim supn→∞

1∑
n
k=0 a(k)

log ‖Ψh(n,−1)‖2 represents
the normalized Lyapunov index of the consensus
error equation (A3) with respect to the sequence of
consensus gains. This index is a negative real num-
ber and the smaller it is, the faster the state trans-
fer matrix Ψh(n,−1) converges to zero. Therefore,
th can be viewed as a measure of the transient
performance of the system. The smaller the th is,
the faster the states converge to consensus, that is,
the better the transient performance becomes.

Under the condition of Theorem 4.2, the sam-
pling size h has dual impacts on the steady-state
and transient performances. Making sh smaller im-
plies making th larger, and vice versa. No mat-
ter what the sampling size is, the integrated per-
formance shth is always equal to or larger than a
positive infimum. We call this phenomenon uncer-
tainty principle of Gaussian networks. As is well-
known, uncertainty principle is also called Gabor
inequality; and such principles play important roles
in modern physics, biology and information sci-
ence. By (26), the infimum of shth is proportional
to (λ2N

2)−1σ
∑N

i=1

∑
j∈Ni

w2
ij, which is a constant

characterizing the intrinsic property of the commu-
nication network. It can be seen that, stronger con-
nected topology (larger λ2) together with smaller
noises intensity will lead to a smaller value of this
constant. Therefore, (λ2N

2)−1σ
∑N

i=1

∑
j∈Ni

w2
ij

can be viewed as a measure of the intrinsic per-
formance of the communication network. We call
this constant the Gabor constant of Gaussian net-
works.

5 Numerical examples

Example 1. Consider a dynamic network of

three agents with the topology graph G1 = {1, 2, 3,
{(1, 2), (2, 1), (2, 3), (3, 2), (3, 1), (1, 3)}, W1 =
[wij ]3×3}, where w12 = w21 = w23 = w32 = w31 =
w13 = 1, and other elements are all zeros. The mea-
surement noises are independent standard white
Gaussian sequences. The initial states of the three
agents are x1(0) = −2, x2(0) = −4, x3(0) = 6,
respectively. Take the sequence of consensus gains
as a(k) = log(k+2)

k+2
, k = 0, 1, . . ., and the sampling
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size h = 0.5 s. Then, under the control of pro-
tocol (4), the states of the closed-loop system are
shown in Figure 1. It can be seen that as time goes
on, the states of the group asymptotically achieve
consensus.

Figure 1 State curves of Example 1.

Example 2. By this example we investigate
the impact of the sampling size on both static and
transient performances by the simplest network:
two agent interacting system with i.i.d. standard
white Gaussian measurement noises. The initial
states of the two agents are x1(0) = 5, x2(0) = −5,
respectively. The sequence of consensus gain is
taken as a(k) = log(k+2)

k+2
, k = 0, 1, . . ., and the sam-

pling sizes are taken as 1 s, 0.5 s, 0.1 s and 0.06 s,
respectively. Then, under the control of protocol

Figure 2 State curves of Example 2 with h = 1 s.

Figure 3 State curves of Example 2 with h = 0.5 s.

(4), the states of the closed loop system are shown
in Figures 2–4, respectively, where the curves for
h = 0.1 s and h = 0.06 s are drawn in one figure
to exhibit the impact of the sampling size on the
convergence rate. From Figures 2–4, it can be seen
that reducing the sampling size does improve the
static performance, but may slow down the conver-
gence rate of the closed-loop system to the static
state.

Figure 4 State curves of Example 2 with h = 0.1 s and

h = 0.06 s.

6 Concluding remarks

In this paper, SD-based average-consensus control
is considered for networks of continuous-time first-
order integrator agents with random measurement
noises. Different from previous research, though
each agent itself is a continuous-time process, its
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control input is based only on the information ob-
tained at the discrete sampling instants. Under
mild conditions on network topology and measure-
ment noises, by the theory of probability and the
graph Laplacian matrix, we have proved that, if the
sequence of consensus gains satisfies the step rules
of the classical stochastic approximation, then the
control law designed is an asymptotic mean square
average-consensus protocol. By choosing the con-
sensus gains properly, we obtain the almost sure
consensus and an analytic expression of the steady-
state error with respect to the sampling size h,
noise intensity, network parameters and the num-
ber of nodes N . It is shown that for networks with
regular topology, increasing N will decrease the

steady-state error. Besides, an uncertainty prin-
ciple is found for Gaussian networks, and a Gabor
constant is given, which can be viewed as an inte-
grated index reflecting the steady-state and tran-
sient performances.

It should be mentioned that what we have con-
sidered here is only the agents of first-order inte-
grators and the networks with time-invariant topol-
ogy. Extending the results to the high order and
time-varying topology case is an important issue
for future research.

The performance index th in Theorem 4.2 is for
the discrete-time system. Whether or not there is
a counterpart for the original continuous system is
another issue worthwhile to study.

1 Gazi V, Passino K M. Stability analysis of swarms. IEEE

Trans Autom Control, 2003, 48(4): 692–696

2 Olfati-Saber R. Flocking for multi-agent dynamic systems: al-

gorithms and theory. IEEE Trans Autom Control, 2006, 51(3):

401–420

3 Fax J A, Murray R M. Information flow and cooperative con-

trol of vehicle formations. IEEE Trans Autom Control, 2004,

49(9): 1465–1476

4 Lynch N. Distributed Algorithms. San Matero, CA: Morgan

Kaufmann, 1996

5 Olfati-Saber R. Distributed Kalman filter with embedded con-

sensus filters. In: Proceedings of the 44th IEEE Conference on

Decision and Control, and the European Control Conference

2005, Seville, Spain, 2005. 8179–8184

6 Olfati-Saber R, Shamma J S. Consensus filters for sensor net-

works and distributed sensor fusion. In: Proceedings of the

44th IEEE Conference on Decision and Control, and the Eu-

ropean Control Conference 2005, Seville, Spain, 2005. 6698–

6703

7 Vicsek T, Czirok A, Jacob E B, et al. Novel type of phase

transitions in a system of self-driven particles. Phys Rev Lett,

1995, 75(6): 1226–1229

8 Conradt L, Roper T J. Consensus decision making in animals.

Trends Ecol Evol, 2005, 20(8): 449–456

9 Hoogendoorn S P. Pedestrian flow modeling by adaptive con-

trol. Transport Res Rec, 2004, 1878: 95–103

10 Barahona M, Pecora L M. Synchronization in small-world sys-

tems. Phys Rev Lett, 2002, 89(5): 054101

11 Jadbabaie A, Lin J, Morse A S. Coordination of groups of mo-

bile autonomous agents using nearest neighbor rules. IEEE

Trans Autom Control, 2003, 48(6): 988–1001

12 Liu Z, Guo L, Connectivity and synchronization of Vicsek

model. Sci China Ser F-Inf Sci, 2008, 51(7): 848–858

13 Ren W, Beard R W. Consensus seeking in multiagent systems

under dynamically changing interaction topologies. IEEE

Trans Autom Control, 2005, 50(5): 655–661

14 Wang L, Guo L. Robust consensus and soft control of multi-

agent systems with noises. J Syst Sci Complex, 2008, 21(3):

406–415

15 Olfati-Saber R, Murray R M. Consensus problem in networks

of agents with switching topology and time-delays. IEEE

Trans Autom Control, 2004, 49(9): 1520–1533

16 Kingston D B, Beard R W. Discrete-time average-consensus

under switching network topologies. In: Proceedings of the

2006 American Control Conference, Minneapolis, Minnesota,

USA, 2006. 3551–3556

17 Xie G M, Wang L. Consensus control for a class of networks of

dynamic agents: fixed topology. In: Proceedings of the 44th

IEEE Conference on Decision and Control, and the European

Control Conference 2005, Seville, Spain, 2005. 96–101

18 Xie G M, Wang L. Consensus control for a class of networks

of dynamic agents: switching topology. In: Proceedings of the

2006 American Control Conference, Minneapolis, Minnesota,

2006. 1382–1387

19 Wang J H, Cheng D Z, Hu X M. Consensus of multi-agent lin-

ear dynamic systems. Asian J Control, 2007, 10(2): 144–155

20 Hong Y G, Hu J P, Gao L X. Tracking control for multi-agent

consensus with an active leader and variable topology. Auto-

matica, 2006, 42(7): 1177–1182

21 Moreau L. Stability of multiagent systems with time-depend-

ent commmunication links. IEEE Trans Autom Control, 2005,

50(2): 169–182
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Appendix

Lemma A.1[38]. Let {zi, i � 1} be an i.i.d.
random variable sequence with zero mean, {aki, i =
1, 2, . . . , k, k = 1, 2, . . .} be a double array of con-
stants. If there exists p ∈ [0, 2) such that E|z1|p <

∞ and max1�i�k |aki| = O( 1
k1/p log k

), then

lim
k→∞

k∑

i=1

akizi = 0 a.s.

Proof of Theorem 4.1. By (8) and the fact
that 1TPh(k) = 1T, we have

1
N

N∑

j=1

xj((k + 1)h)

=
1
N

N∑

j=1

xj(kh) + ha(k)
1
N

N∑

j=1

nj(kh).

Summing up both sides of the above equation from
k = 0 to k = n gives

1
N

N∑

j=1

xj((n + 1)h)

= h

n∑

k=0

a(k)
1
N

N∑

j=1

nj(kh) +
1
N

N∑

j=1

xj(0). (A1)

Notice that
∑∞

k=1
(log(k+1))2

(k+1)2
< ∞. Then, by the

Khintchine-Kolmogorov convergence theorem[39]

we know that
∑n

k=0 a(k) 1
N

∑N

j=1 nj(kh) converges
both almost surely and in mean square. This to-
gether with (A1) leads to

lim
n→∞

1
N

N∑

j=1

xj(nh) = x∗
h, (A2)

where

x∗
h

�=
1
N

N∑

j=1

xj(0) + lim
n→∞

h

n∑

k=0

a(k)
1
N

N∑

j=1

ni(kh).

From limk→∞ a(k) = 0, we know that for any
given M0 � 2, there is k0(h) > 0, such that:
2hΔ supk�k0

a(k) < 1, ∀k = k0, k0 + 1, . . .; log(x+2)

x+2

is strictly decreasing on [k0,∞); and hλ2 log[(n
+3)(k + 3)] � M0, ∀n � k � k0.

By (8) and the fact that 1
N
11TPh(k) = 1

N
11T,

we have that for n = k0, k0 + 1, . . .,

X((k + 1)h) − 1
N

11TX((k + 1)h)
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=
(

Ph(k) − 1
N

11T

)(

X(kh) − 1
N

11TX(kh)
)

+ ha(k)
(

IN − 1
N

11T

)

N(kh)

= Ψh(n, k0 − 1)
(

X(k0) − 1
N

11TX(k0)
)

+h
n∑

k=k0

Ψh(n, k)a(k)
(

IN− 1
N

11T

)

N(kh),(A3)

where Ψh(n, k) is given by (10).
We now prove that
n∑

k=k0

Ψh(n, k)a(k)
(

IN − 1
N

11T

)

N(kh) = o(1),

n → ∞ a.s. (A4)

Denote by Ψh(n, k)ij the element of matrix
Ψh(n, k) in the ith row and the jth column;
by sjl the element of matrix (IN − 1

N
11T) in

the jth row and the lth column. Noticing that
∑n

k=k0
Ψh(n, k)a(k)(IN − 1

N
11T)N(kh) is an N -

dimensional column vector, with the ith compo-
nent

∑N

j=1

∑n

k=k0
Ψh(n, k)ija(k)(

∑N

l=1 sjlnl(kh)),
then, to verify (A4), it suffices to show

lim
n→∞

n∑

k=k0

Ψh(n, k)ija(k)nl(kh) = 0 a.s.,

∀ i, j, l = 1, 2, . . . , N. (A5)

Similarly to Lemma 3.1, by 2Δh supk�k0
a(k) < 1

we have

‖Ψh(n, k)‖2 �
n∏

i=k+1

exp{−ha(i)λ2}

� exp
{

− hλ2

n∑

i=k+1

log(i + 2)
i + 2

}

,

∀ n = k0, . . . ;

k = k0 − 1, . . . , n − 1. (A6)

Since log(x+2)

x+2
is strictly decreasing on [k0,∞), we

have
n∑

i=k+1

log(i + 2)
i + 2

�
∫ n+1

k+1

log(x + 2)
(x + 2)

dx,

∀ n = k0 + 1, . . . ; k = k0, . . . , n − 1. (A7)

Noticing that
∫ n+1

k+1

log(x + 2)
x + 2

dx = (log(n + 3))2 − (log(k + 3))2

−
∫ n+1

k+1

log(x + 2)
x + 2

dx,

one can get
∫ n+1

k+1

log(x + 2)
x + 2

dx

=
1
2
(log[(n + 3)(k + 3)])

(

log
n + 3
k + 3

)

� M0

2hλ2

(

log
n + 3
k + 3

)

,

∀ n = k0 + 1, . . . ; k = k0, . . . , n − 1.

This together with (A6) and (A7) gives

‖Ψh(n, k)‖2a(k)

�
(

k + 3
n + 3

)M0/2 log(k + 2)
k + 2

� C3

1
(n + 2)M0/2

log(k + 2)
(k + 2)1−M0/2

,

∀ n = k0 + 1, . . . ; k = k0, . . . , n − 1,

where C3 = supk�k0
(k+3

k+2
)M0/2. Thus, by M0 � 2

we have

max
k0�k<n

‖Ψh(n, k)‖2a(k)

� C3 log(n + 2)
n + 2

= O

(
log n

n

)

,

∀ n = k0 + 1, . . . ,

and hence, by

max
1�i,j�N

|Ψh(n, k)ij | �
√

N‖Ψh(n, k)‖2,

we have

max
k0�k<n

|Ψh(n, k)ij |a(k) = O

(
log n

n

)

,

∀ n = k0 + 1, . . . ; i, j = 1, 2, . . . , N.

This together with Assumption (H2′′) and Lemma
A1 leads to (A5). Therefore, (A4) holds.

From (A6) it follows that

lim
n→∞

‖Ψh(n, k0 − 1)‖2 = 0,
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which together with (A3) and (A4) gives

lim
n→∞

(

xi(nh) − 1
N

N∑

j=1

xj(nh)
)

= 0 a.s.,

i = 1, 2, . . . , N.

Thus, by (A2) we have

lim
k→∞

xi(kh) = x∗
h a.s., i = 1, 2, . . . , N, (A8)

sup
t�0

‖X(t′)‖2 < ∞ a.s. (A9)

Noticing that
∑∞

k=0 a(k)N(kh) converges almost
surely, we know that

lim
t→∞

a

(
t′

h

)

N(t′) = 0 a.s., (A10)

which together with (18), (A8) and (A9) leads to

lim
t→∞

xi(t) = x∗
h a.s., i = 1, 2, . . . , N.

Thus, (i) is true.
Recalling that

∑n

k=0 a(k) 1
N

∑N

j=1 nj(kh) con-
verges in mean square, by the dominated con-
vergence theorem[39], we can get that E(x∗

h) =
1
N

∑N

j=1 xj(0) and

Var(x∗
h) = E

(

lim
n→∞

h
n∑

k=0

a(k)
1
N

N∑

j=1

nj(kh)
)2

= lim
n→∞

E

[(

h
n∑

k=0

a(k)
1
N

N∑

j=1

nj(kh)
)2]

= h2σh

∑N

i=1

∑
j∈Ni

w2
ij

N 2

∞∑

k=0

a2(k)

= o(1), h → 0.

Thus, (ii) is true.
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